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1 Introduction

A striking feature of data on rates of use of medical procedures is the ex-
tent of regional variation. Studies conducted at different times, in different
countries, with very different insurance systems, all find patterns of variation
that demonstrate regional similarities simultaneous with considerable global
diversity. For example, in a comparison of hospitalization referral regions
across the country, rates of coronary artery bypass grafting among Medicare
enrollees varied by a factor of more than 3.5, while the rates of coronary
angioplasty ranged from 2.5 to 16.9 per 1,000 enrollees (The Dartmouth
Atlas of Health Care 1999). Such statistics are taken to reflect large
variations in the quality of care, which is an expressed cause for concern.
While there has been much previous examination of such findings, regional
practice variations remain something of a puzzle (see Phelps, 2000). In this
study, we approach this question with detailed data on coronary patients,
together with an evolutionary model of choice emphasizing local social inter-
actions.

Do the treatment variations reflect simple physician ignorance? We find
this explanation unlikely given the broad dissemination of practice guide-
lines and quality indicators (e.g. the Cooperative Cardiovascular Project,
see O’Connor et. al. 1999, and Gunnar et. al. 1990). To look for answers,
we consider the complex process by which physicians acquire, interpret, and,
ultimately, incorporate information into specific treatment choices. This pro-
cess is inherently social, and the patterns of choice that emerge from it will
reflect a particular set of social interactions. Understanding the structure
and character of such interactions is therefore essential for understanding re-
gional practice variations, and so for making any attempts to ‘improve’ (or
render more uniform) physicians’ choices.

To explain the regional variations and understand the role of social net-
works in their propagation, we undertake complementary empirical and the-
oretical inquiries. The empirical data for this study comprise a panel of
physicians and their patient discharge records in Florida hospitals in 1997-
1998.

We focus on coronary care patients (HCFA, 2002), and on the choice of
treatment of acute myocardial infarction (AMI) and coronary atherosclerosis
in particular. The data permit construction of severity of illness measures,
including detailed indicators of patient-specific comorbidity conditions, (Elix-
hauser et al. 1998, the Charlson Comorbidity Index, Romano et. al. 1993),
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as well as patient age, sex, and race. Managed care has been shown to affect
treatment choice (Cutler and McClellan, 1996), so we control for the di-
verse financial incentives for patients and physicians by separate estimation
of HMO and Medicare patients in our study.

By controlling for a far broader range of factors than has been done
in most previous empirical studies of the regional variation phenomenon we
hope to assess the robustness of the findings. At the same time, our interest is
in assembling measures of physician interaction to develop an understanding
of the social processes at work in the choice of advanced treatement for heart
patients.

The process by which an appropriate procedure is chosen for a patient is
a complicated one. We may identify at least three stages. The process begins
with a diagnosis, which itself presents several alternatives. The physician and
patient may decide upon, or against, an invasive diagnostic procedure. The
next stage is the treatment choice, which is likely to be made in consultation
with a specialist. In the context of cardiac care, this specialist would be
a cardiologist, and a decision may be whether the patient is to undergo
coronary artery bypass grafting (CABG) or coronary angioplasty. Finally,
the procedure is executed by a surgeon. It is possible to develop distinct
explanations of regional variation by focusing on the different stages of this
process.

Our own account begins from the observation that decision–makers at
the treatment choice stage should rationally take into account the skill with
which a procedure is likely to be executed in the final stage. In a world
with spillovers and learning, the relative frequency with which procedures
are used locally could affect their likelihood of success. While we highlight
increasing returns in the technology, regional variation patterns can also arise
in our model if physicians or patients display a desire to conform with lo-
cally prevalent choices. In either case, increasing returns could explain the
emergence of uniformity in procedure choice, or resistance to new procedures.
However, it does not adequately explain the pattern of global diversity. Our
model adds two additional features. First, there are regional differences in
the patient population, and different procedures are appropriate for different
patient types. Second, we assume a local interaction structure whereby each
doctor interacts with only a small number of neighbors. There is overlap in
neighborhoods, and no part of the population is totally isolated. The inter-
play of these three features leads to the emergence of regions with uniformity
of treatment choice.
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Somewhat different explanations of the phenomenon focus on learning and
uncertainty at the decision stage of the process (e.g. the model described by
Phelps, 2000). If the relationship between the disease and treatments is not
completely understood, physicians must continually learn about the correct
treatment. The experience of colleagues is one possible source of information,
likely to be used since it is relatively low cost. Phelps shows how regional
patterns, once established, would persist if physicians use Bayes’ rule to
update their beliefs. It should be possible to extend our basic approach to
models of information acquisition and learning about the relative efficacy of
procedures.

The econometric model focuses on the various aspects of our account of
the regional variation phenomenon. To determine if social networks play a
significant role, we measure the influence on a given physician’s choices of
the rates of usage of various procedures by other physicians working at the
same hospital or set of hospitals. To test for the presence of scale economies
we include raw frequency counts for the procedures of interest at the hospital
at which the given procedure was performed. By including these variables in
our empirical analyses, together with variables representing eleven geographic
districts and several patient characteristics, we gain a more complex picture
of the shape of the regional variations. Notably, we find some evidence that
what have been perceived as variations by region may be better explained
by interactions between physicians.

In this paper, we draw upon several different lines of research. Our the-
oretical model follows most directly from Young and Burke, 2001, and also
builds upon ideas in the evolutionary game theory literature (in particular,
Young 1993, Young 1996, Kandori, Mailath and Rob 1993, Ellison 1993,
Ellison and Fudenberg 1993, and Morris 2000). In the health economics lit-
erature, the phenomenon is discussed in the survey by Phelps (2000), who
also describes some of the models in considerable detail. The medical litera-
ture is extensive, even after we limit attention to cardiac care. In addition to
The Dartmouth Atlas (op cit.), the phenomenon is described in the The
Dartmouth Atlas of Cardiovascular Health Care, 1999, and in
O’Connor et. al. (1999), Pilote et. al. (1995), and numerous papers by
Wennberg and coauthors (e.g. see the citations in Phelps).

The rest of the paper is organized as follows. In section 2, we describe
our theoretical model and results, together with simulations of the model.
Section 3 contains the empirical analysis. We begin with a discussion of
the data, describe the econometric model, present results from the analysis
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of angiography, and of surgical interventions. Concluding remarks are in
section 4.

2 A Model of Procedure Choice

The model has two essential features. Social (non-market) influences are
important, and interaction among agents is local. We imagine a population
of physicians, at fixed locations, interacting with a set of neighbors. The
procedures used by neighbors will influence the choice of a specific physician.
This may be because of a preference for conformity, but could equally well
arise from spillovers in knowledge and experience. If the local pool of expe-
rience and skill with the use of a particular procedure is greater physicians
are more likely to lean in favor of using it. There is a substantial body of
research, starting from the work of Schelling (1971) on neighborhood segrega-
tion, which shows how the presence of interdependent preferences, spillovers,
or increasing returns, can lead to much greater uniformity than is warranted
by fundamentals. The empirical features of data on practice variation sug-
gest uniformity within regions, but considerable diversity across regions. To
capture this, and motivated by the model of Young and Burke (2001), we as-
sume a local interaction structure. As we will see later, it is the combination
of these two ingredients of our model which generates the regularities in the
data. We assume there are population differences across regions, and find
that small differences in the population profile give rise to large differences
in procedure use.

The pattern of use of procedures arises as a steady state of a stochastic
dynamic process. We begin by describing the dynamical system. Physicians
are indexed by Z, the set of integers. Let N ≡ {−1, +1}. For each x ∈ Z,
x + N denotes the set of neighbors of x. There are two types of patients,
denoted α and β, and two procedures A and B. Let πz(t, L, R) denote the
payoff of a physician from using procedure z ∈ {A, B} on a patient of type
t when her neighbors use {L, R} (L and R belong to {A, B}). For instance,
πA(α, ·, ·) could be the likelihood of success of procedure A on an α-patient,
but we allow for other possibilities. We assume πA and πB are the same for
all physicians. The essential feature of payoffs is that:

(a) Procedure A is optimal for α–patients if even one neighbor uses A.

(b) Procedure B is optimal for β–patients if even one neighbor uses B.
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Three properties of payoffs can generate this feature: (1) payoffs from us-
ing a procedure increase with the number of neighbors who use the same
procedure, (2) neither procedure dominates the other, and (3) for any fixed
neighborhood, A yields higher payoffs when used on an α type than when
used on a β type (and B yields higher payoffs when used on a β type than
on an α type). However, it is not true that procedure A is always better
than procedure B for an α type, nor that B is better than A for β types.
For example,

πA(α, B, B) = 0.3 πA(β, B, B) = 0.2

πA(α, A, B) = 0.4 πA(β, A, B) = 0.3

πA(α, A, A) = 0.5 πA(β, A, A) = 0.4

Similarly, for B,

πB(α, B, B) = 0.4 πB(β, B, B) = 0.5

πB(α, A, B) = 0.3 πB(β, A, B) = 0.4

πB(α, A, A) = 0.2 πB(β, A, A) = 0.3

Patients arrive randomly at each location. Inter-arrival times are exponential
with parameter λ. We will assume λ = 1.

The concentration of patient types varies by region. We partition Z into
two regions, East and West. The negative integers constitute the West, while
the non-negative integers constitute the East. The probability that a patient
who arrives at any given location in the East (West) is of type α will be given
by pE (pW ). The state of the system is an assignment of zeros and ones to
all of the integers (ω : Z → {0, 1}). A ‘1’ at any location indicates that the
physician there used procedure A on her most recent patient. A ‘0’ denotes
the use of procedure B. We let Ω denote the set of states.

Consider a specific location x ∈ Z. When a patient arrives at x, the
physician makes a choice between A and B. The choice depends on the
type of patient, as well as the choices made (in the recent past) by neigh-
boring physicians. As mentioned earlier, inter-arrival times are exponential,
with parameter λ = 1. We can imagine an infinite binary sequence, with
the values at each location indicating the most recent choice made by the
physician there. At random dates there is a transition: the value at one
location changes from zero to one or vice versa. The process is a continuous
time Markov chain, Xt, and we are interested in the invariant (equivalently
stationary, or equilibrium) measures of this process.
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Let 0 ∈ Ω denote the state ω with ω(i) = 0 for all i ∈ Z. Similarly, 1 ∈ Ω
denotes the state ω with ω(i) = 1 for all i ∈ Z. Clearly, δ0 and δ1 are invariant
measures. If we somehow reach the configuration 0 (or 1), the process can
never escape from this state. Following Liggett (1999), we say that the
process coexists if there is an invariant measure that is not a mixture of δ0

and δ1. We show that the process Xt defined above coexists by identifying
such an invariant measure. That is, we identify an invariant distribution in
which both procedures are used with strictly positive probability.

Define the set of states Z ⊂ Ω as follows: ω ∈ Z if there exists m ∈ Z
such that ω(i) = 1 for all i < m and ω(i) = 0 for all i ≥ m. Z is a
communicating class of the process, that is every state in Z is reached with
positive probability from any other state in Z, and it is closed (once in Z, we
can never escape). It is recurrent (we return to every state) but not periodic.
The process restricted to Z is irreducible.

In proving the existence of an invariant distribution which has Z as its
support, for simplicity we characterize such a distribution in terms of the
location of the boundary point between the region in which procedure A is
used and the region in which procedure B is the norm. In the proposition
below, ρ(·) specifies the probability distribution of this boundary point. The
proof is in the appendix.

Proposition 1. Suppose pW > 1/2 and pE < 1/2. Then the process coexists.
Specifically, there is an invariant measure ρ, with support Z, such that

ρ(m) =
1

K

(
1− pW

pW

)−m

if m < 0

ρ(m) =
1

K

(
pE

1− pE

)m

if m ≥ 0.

K is a real number constant which can be chosen to ensure that ρ is a prob-
ability.

The proposition above tells us that the location of the boundary between
procedure regions behaves according to an invariant distribution. Imagine
the process as follows: each state consists of an infinite string of ones followed
by infinitely many zeros, but the boundary between the two regions keeps
moving around, according to the probabilities indicated by ρ(·). The process
behaves rather like an asymmetric random walk, in which the respective
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probabilities in the East and in the West that a given location is the boundary
differ.

In case pW < 1/2 and pE > 1/2, we get a similar result, only the support
now consists of a string of zeros followed by ones. In case pW < 1/2 and
pE < 1/2, the invariant distribution is δ0. If pW > 1/2 and pE > 1/2, it is
δ1.

Thus the process has several invariant distributions, and we would like to
identify the distribution which is most likely to be selected in the long run
from randomly chosen initial conditions. To gain insight into such selection,
we turn to a computational analysis. We are forced to limit attention to a
finite number of locations, and consider N locations on a circle. We delimit
the integers and make 1 and N neighbors. Since ρ(·) has support Z, we
expect that for small N one of 0 or 1 will eventually be reached, so that
δ0 or δ1 is selected. This is indeed what we find. But for even moderately
sized N we obtain the invariant distribution described in Proposition 1. For
N = 100, we have never seen anything else in simulations. Further evidence
in support of ρ(·) is provided by a stability analysis. When we introduce a
small amount of noise in decision making (physicians occasionally experiment
with procedures), δ0 and δ1 seem to become unstable, and we are much more
likely to see ρ, even with small N . All in all, we see strong evidence to
support the selection of ρ(·).

The results of our simulations are conveyed through graphs. We start with
a random assignment of procedures to each of the N locations, and generate a
decision date (arrival time of patient) for each physician. Interarrival times at
each location are exponentially distributed. The probability that a patient is
of a particular type differs across regions. We identify the physician with the
earliest decision date, generate a patient for her, and update her procedure
choice in the manner specified above. Finally, we generate the next decision
date for this physician, and identify the next physician who must choose a
procedure. We can then track the evolution of the procedure use at each
location.

In Figure 1 we plot the frequency of use of procedure A at each location.
The x–axis has N = 100 locations. We run the simulation for 5000 decision
opportunities, and compute the proportion of times that procedure A was
the recorded procedure at each location. Note that the number of actual
decision opportunities at each location will be a much smaller number. The
probability of arrival of α-patients is pW = 0.7 in the West (locations 1–
50), and pE = 0.3 in the East (locations 51–100). There is no noise in this

7



simulation. Examining Figure 1, we see that there is substantial regional
variation. In the West, there is extensive use of procedure A, whereas in the
East, A is infrequently used.

In Figure 2, we depict the aggregate use of procedure A at each instant
that a decision opportunity arises. The decision opportunity number tracks
evolution with time (only, the length of time between any two decision dates
is randomly distributed). We observe that this number changes, but stays
within a fairly narrow range around 50. A much better idea of the evolution
of the system is obtained from Figure 3. Here we fill in a grid with two
colors, gray and black (for those who cannot afford the colored luxury edition
of this paper). At each decision opportunity, gray at location m indicates
that the most recent procedure used there was A. At the beginning, we
see a completely random pattern of procedure choices. Then, with time, we
see the evolution of greater uniformity. Locations 1–50, in the West, turn
completely gray, indicating adoption of procedure A. Locations 51–100 turn
black, as B is adopted widely in the East.

The simulations reported in Figures 4–6 take a total of N = 120 locations
around a circle. This is split into four regions, with thirty physicians in each
location. In the first and third locations (1–30, and 60–90) the probability of
arrival of α patients is less than half. In the second and fourth location this
probability is greater than half. We use probabilities of 0.7 and 0.3 as before.
Once again, starting from a random starting assignment of procedures we
track the evolution over 5000 decision dates and plot the frequency of use
of A at each location. Procedure A is used almost exclusively in the second
and fourth locations, whereas B is used in the first and third. Figure 5 show
the details. The emergence of uniform regions is remarkably quick. After
that there are small movements at the boundaries, but the regional pattern
is very robust.

Finally in Figure 6, we present the outcome from one of our robustness
exercises. We make the regions very small — there are forty locations in
all, split into four regions. We add noise: after a decision is made by a
physician, there is a one in ten chance that she decides to go with the other
procedure. We may interpret this as a random component of choice, or a
conscious decision to experiment. Despite this large amount of noise, we see
that definite regional patterns of procedure use do emerge.
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3 Empirical Analysis

3.1 Description of the Data

The data for this study are taken from a census of inpatient stays reported
quarterly by Florida hospitals. We selected all patient records for the first
half of 1998, subject to several criteria. Patients selected were over 25 years
old, had a principle diagnosis of AMI or coronary atherosclerosis, and were
admitted either via the emergency room or under a non life-threatening,
elective condition.1 To control for insurance status, we separately analyze
patients who are insured by HMOs and Medicare (non-HMO). Finally, for
reasons explained below the physician assigned to the patient must have been
designated as the attending physician for at least 10 patients at a Florida
hospital in the six month period. Resulting samples include 5382 HMO and
5656 Medicare patients and are broadly representative of patients who are
candidates for advanced coronary care. A limitation of the data should be
noted, however. Each observation is a single hospital stay. Repeat hospital-
izations by a single patient are masked in the file, so the complete record of
treatment choice is censored. Our econometric model attempts to correct for
the possible biases from this censoring.

To test for the significance of social interactions in medical choice, we
define the social network for a given physician from the group of physicians
who practice in the same hospital(s). That is, we identify the network as the
set of other attending physicians who have common admitting privileges in
at least one hospital. We exclude from the sample, any physicians treating
few (less than 10) patients in order to focus on doctors who are most likely
to be interacting in the course of their practice. These networks overlap
for individual doctors, rather than forming a partition of the set of doctors.
We can view each network as belonging to a given physician, i.e. the net-
work owner. For each network, we measure the proportion of all patients
treated by network physicians (not including the owner) who received each
given procedure, including coronary angiography, bypass, and angioplasty.
To capture the effect of possible increasing returns to scale, we also include,
for each procedure, covariates measuring the total number performed at the
hospital. Finally, we use lagged variables to mitigate potential endogeneity
between the treatment choice of a physician and that of the network of peers.

1The CCS Diagnosis Categories were used to identify the 56 ICD-9CM categories rel-
evant to these patients.
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That is, variables measuring the activity by the network physicians are taken
from the six months one-year prior to the first half of 1998.

We admit that this construction of social networks is somewhat arbitrary.
We considered several alternative variables and methods to define the net-
works, such as membership in particular medical associations, medical school
attended, hospital of residency, and others. Arguably, the hospitals of cur-
rent activity would be the settings most likely to serve as loci for the types
of knowledge spillovers implied in the model. As a check against the spec-
ification error in constructing our social network, we consider the effect of
randomly-assigned groupings of doctors, to determine whether our network
methods serve as a better predictive factor in a given physician’s choice. In
the next version of the paper we will include the bootstrapped results of
empirical models performed using procedure choice rates in randomly con-
structed physician networks.

Despite the multiplicity of influences that may contribute to any medi-
cal decision, we locate procedure choice simply at the level of the attending
physician. In the data, the attending physicianis defined as the party having
primary responsibility for a patient’s care and treatment, and/or the one who
certifies medical necessity. The surgeons who perform bypass or angioplasty
operations tend to specialize in just one procedure. Thus, any meaningful
choice between the two appears to take place prior to the employment of the
surgeon. The attending physician in AMI cases will typically be a cardiolo-
gist, to whom a patient may have been referred by a primary care provider.

3.2 Analysis of Angiography

We begin by investigating the binary choice of whether or not to perform
coronary angiography2, a diagnostic procedure that is used to identify, lo-
cate and measure the severity of coronary artery disease. While extremely
accurate, the procedure is invasive and risky, and may be dominated in terms
of cost-effectiveness by other, noninvasive diagnostics such as echocardiogra-
phy and SPECT (Garber and Solomon, 1999). A probit estimation indicates
the factors that affect the decision concerning this procedure, including, pos-
sibly, the rate of angiography within the relevant social network.

2This procedure is also frequently referred to as cardiac catheterization, although the
two are not technically the same thing. Angiography consists of viewing the coronary
arteries with an X-ray technique called fluoroscopy. Catheterization is the means by which
the dyes required for angiography are delivered to the aorta.
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We report probit estimations under each of three models, and for each
of two populations distinguished by the insurance type–a group covered by
Medicare and a group covered by HMOs. In the first model the only re-
gressors are the district dummies to capture regional variations within 11
planning districts in Florida. In the second model we add patient race, sex,
age, and the Charlson index, an age-adjusted index of illness severity sum-
marizing the patient comorbidity characteristics (Charlson, et.al.1987).
In the third model, we add the (one-year lagged) social network variables:
the proportion of patients treated by others in the physician’s network who
received the procedure, and the counts of the number of angiographies (cath
count ), bypasses (bypass count), and angioplasties (plasty count) performed
at the hospital in the first half of 1997. Table 1 shows the coefficient estimates
from the full model, for each of the populations. Estimation is conducted on
separate samples for HMO and Medicare patients to avoid the confounding
effects of insurance status on the treatment choices.

Results in Table 1 indicate that the model is broadly consistent with the
hypothesis that variations in regions, patient characteristics and social net-
works are important in the choice of this diagnostic treatment. For example,
patients who are admitted from the emergency room or who are transferred
to another hospital are less likely to receive the procedure. Older, sicker and
black patients are less likely to receive the procedure. Most important for our
purpose is the significant effect observed of the average rate of bypass and
angioplasty procedures within the physician social network. Other consid-
erations held constant, the transmission of experience via informal contacts
with other angiography-prone peers may help explain the readiness to order
this diagnostic test. Finally, the coefficients associated with the level of an-
gioplasty and angiography procedures (plasty count and cath count) at the
hospital are consistent with the hypothesis that the economies of scale in
performing these procedures may influence the decision, at the margin, to
include the angiography procedure.

Table 1 also reports the district dummy coefficients. Further results (not
shown) comparing their estimates across models indicate an attenuation of
the regional variations in models controlling for patient characteristics and
social networks relative to one with regional dummies alone. Perhaps there
is a significant role for social networks in explaining some of the variation
that initially shows up as regional variation.
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Table 1: Probit Model on Coronary Angiography, all variables included.

HMO patients Medicare patients
Variable Estimate Std. Error P-value Estimate Std. Error P-value

Intercept -0.580 0.163 .0004 1.101 0.275 .0001
emergency -0.064 0.043 .1359 -0.216 0.044 .0001
transferred -1.998 0.224 .0001 -2.001 0.336 .0001
district 1 -0.498 0.182 .0064 -0.414 0.131 .0016
district 2 -0.372 0.201 .0636 -0.602 0.147 .0001
district 3 -0.540 0.105 .0001 -0.637 0.114 .0001
district 4 -0.096 0.099 .3330 -0.322 -0.123 .0086
district 5 -0.648 0.096 .0001 -0.580 0.112 .0001
district 6 0.022 0.087 .8004 -0.091 0.101 .3638
district 7 -0.124 0.100 .2121 -0.326 0.114 .0043
district 8 -0.112 0.117 .3369 -0.242 0.114 .0337
district 9 -0.177 0.093 .0557 -0.290 0.108 .0073
district 10 0.055 0.091 .5480 -0.013 0.111 .9058
male 0.077 0.042 .0679 0.063 0.041 .1278
black -0.390 0.086 .0001 -0.351 0.115 .0022
hispanic 0.100 0.085 .2398 -0.149 0.110 .1755
other race 0.188 0.113 .0964 0.017 0.057 .9158
age -0.011 0.002 .0001 -0.031 0.003 .0001
charlson -0.071 0.020 .0003 -0.123 0.020 .0001
bypass rate 1.914 0.159 .0001 1.714 0.155 .0001
plasty rate 1.803 0.157 .0001 2.486 0.164 .0001
bypass count 0.011 0.045 .8003 0.075 0.044 .0858
plasty count -0.753 0.093 .0001 -0.966 0.095 .0001
cath count 1.211 0.099 .0001 1.389 0.099 .0001

N(HMO)= 5382; N(Medicare)= 5656, Log likelihoods: (−2856.36,−2728.83)
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3.3 Two-stage Treatment Model

Patients who are hospitalized with AMI and coronary atherosclerosis may be
given intensive surgical interventions such as bypass surgery or angioplasty,
or may simply be held for observation, diagnostic testing and drug therapy.
The data reveal that the two surgical interventions plus non-surgery inpatient
stays account for the preponderance of patient care given in our data. It
seems reasonable to posit a two-stage process in patient care decisions. First,
a decision is made about whether or not to intervene surgically. Perhaps at
this stage, a decision to delay surgery for a future hospitalization is made
or the surgery is not recommended for the patient. For other patients, one
of the two principle surgical methods is prescribed. Thus, conditional on
the first decision, a choice between bypass and angioplasty is necessary for
those selected for surgery. Whether treatment decisions are influenced by
the norms of practitioners in the physician’s social network may be modeled
with two related equations. The events of interest are the determination
of surgical intervention and the choice of bypass surgery versus angioplasty,
given that surgery will be given the patient.

We use a bivariate probit model of treatment choices. In the data, we
observe the qualitative outcome y1 = 1 if the patient receives surgery, and
y1 = 0 otherwise. The type of surgery is observed as y2 = 1 if bypass
and y2 = 0 otherwise. Latent (unobserved) variables determine the patient’s
illness and location characteristics or preferences for surgery, y∗1, and the type
of surgery, y∗2, while only the qualitative choices of (y1, y2) are observed. The
two equations are:

y∗1 = Xβ1 + ε1

y∗2 = X2β2 + ε2

where ε1, ε2 are assumed to be i.i.d. bivariate normal random variables with
zero means and finite variances and covariance. The choice of surgery is a
function of exogenous variables including additional ones required for iden-
tification, X = (X1, X2). A consistent estimator of the parameters of the
model requires a further assumption about the data. The qualitative out-
come y1 = 1 is observed when y∗1 > 0, and y1 = 0 may correspond to y∗1 ≤ 0.
However, it is also possible that when y1 = 0, y∗1 > 0, but the surgery is sim-
ply delayed and not observed. Thus, we estimate a Heckman probit model
with selection in which y2 is only observed when outcome y1 = 1. Thus, we
explain the choice between bypass and angioplasty with selection determined
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on whether the patient received surgery or not.
The results are reported in Table 2. The HMO and Medicare samples

are again separated in estimation to avoid the confounding effects of insur-
ance status on the treatment choices. In the model, the selection equation
for y1 determines who is considered for the bypass or angioplasty. This first
stage decision is partly censored since patients discharged without surgery
may be scheduled for later. The model shows that the decision to with-
hold expensive surgical procedure is correlated with patients admitted from
emergency and those who are discharged as a transfer to another hospital.
Patient characteristics capturing comorbidity, gender, age and race are also
significant. The tendency to promote surgery in hospitals that do relatively
large numbers of surgeries is partly confirmed by the significant coefficients
on the counts of bypass and coronary angiographies, but not for the volume
of angioplasty. But after controlling for these factors and the regional vari-
ations, there remain in the evidence substantial effects associated with the
propensity to choose surgery within the physician’s social network. The rates
of angioplasty in the network lead to higher rates of surgery and of bypass
relative to angioplasty. The positive inducement to surgery brought on by
physician interaction is confirmed separately in both samples of patients.

4 Conclusion

Our study of coronary patients, like many others, finds variations in the rates
of diagnostic and treatment choices for patients with heart attacks or coro-
nary atherosclerosis. These variations are sustained, even between regions
of a single state, after controlling for demographic and illness conditions in
some detail.

Observing these variations in the utilization of expensive methods of
treatment or diagnosis of coronary diseases does not necessarily imply un-
wanted or welfare-reducing choices. Based on the results of our theoretical
model, we argue that the patterns and relationships we observe in the data
may reflect an equilibrium process that manifests the influence of a local
interaction structure. As we have stated above, the influence of such interac-
tions may derive from knowledge spillovers across physicians, or from a taste
for conformity, or both. These effects are distinct from economies of scale
effects that reward high volume production of these procedures.

To examine social interaction among physicians in hospital settings for
advanced treatment such as this one, we traced the aggregate treatment
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Table 2: Bivariate probit with sample selection: two-stage surgery choice.
HMO patients Medicare patients

Variable Estimate Std. Error P-value Estimate Std. Error P-value
Bypass vs. Angioplasty (y2)

emergency -0.413 0.067 .0001 -0.143 0.077 .0611
district 1 0.058 0.207 .7781 -0.238 0.170 .1619
district 2 0.432 0.229 .0592 1.068 0.180 .0001
district 3 0.591 0.128 .0001 1.134 0.150 .0002
district 4 0.591 0.128 .0023 0.419 0.156 .0068
district 5 0.260 0.120 .0300 0.609 0.145 .0001
district 6 0.102 0.105 .3312 0.225 0.132 .0883
district 7 0.020 0.117 .8618 0.166 0.147 .2614
district 8 0.553 0.137 .0003 0.863 0.152 .0001
district 9 0.314 0.116 .0070 -0.034 0.150 .8189
district 10 0.215 0.113 .0571 0.240 0.148 .1041
male 0.232 0.050 .0001 0.222 0.049 .0001
black -0.254 0.116 .0293 0.013 0.153 .9310
hispanic -0.059 0.101 .5569 0.002 0.146 .9877
other race 0.037 0.120 .7556 0.277 0.181 .1263
age -0.005 0.003 .1111 -0.005 0.005 .2862
charlson 0.206 0.024 .0001 0.072 0.024 .0028
bypass rate -0.540 0.214 .0123 -1.891 0.256 .0004
plasty rate 2.494 0.243 .0003 2.534 0.314 .0001
bypass count 0.346 0.049 .0001 0.405 0.052 .0001
plasty count -0.934 0.113 .0001 -0.752 0.121 .0001
cath count 0.590 0.124 .0002 0.285 0.130 .0279
intercept -1.799 0.225 .0001 -1.103 0.381 .0040

Surgery or not (y1)
emergency -1.540 0.070 .0001 -1.671 0.069 .0001
transferred -2.244 0.266 .0001 -2.619 0.521 .0001
district 1 -0.164 0.256 .5227 -0.111 0.177 .5289
district 2 0.032 0.275 .9092 0.121 0.205 .5560
district 3 0.059 0.141 .6776 -0.194 0.154 .2071
district 4 0.409 0.134 .0020 0.172 0.160 .2832
district 5 -0.620 0.130 .0001 -0.561 0.152 .0001
district 6 0.095 0.117 .4189 -0.118 0.131 .3658
district 7 -0.211 0.143 .1412 -0.128 0.157 .4153
district 8 -0.120 0.146 .4122 -0.061 0.141 .6669
district 9 0.105 0.120 .3799 -0.050 0.139 .7191
district 10 -0.020 0.124 .8728 -0.189 0.149 .2030
male 0.318 0.057 .0001 0.203 0.057 .0001
black -0.541 0.102 .0001 -0.590 0.144 .0004
hispanic -0.026 0.113 .8173 -0.256 0.137 .0617
other race 0.162 0.183 .3749 -0.021 0.219 .9230
age -0.025 0.003 .0001 -0.062 0.004 .0001
charlson 0.001 0.026 .9560 -0.131 0.028 .0001
bypass rate 1.453 0.203 .0001 1.807 0.195 .0001
plasty rate 2.272 0.206 .0002 3.025 0.219 .0003
bypass count 0.438 0.091 .0004 0.556 0.085 .0001
plasty count -0.181 0.144 .2100 -0.193 0.140 .1679
cath count 0.641 0.146 .0001 0.415 0.152 .0060
intercept 1.168 0.216 .0001 4.407 0.373 .0001
rho 0.374 0.131 0.046 0.120

N(HMO)=5382, N(Medicare)=5656; Log-likelihood(HMO)= -3546.079,
Wald(HMO)=419.50; Log-likelihood(Med.)=-3278.813,Wald(Med.)=394.12
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tendencies of a hypothetical social network by identifying the most likely
points of mutual contact between physicians. In doing so, we have found
that, controlling for patient characteristics, a patient will be more likely to
receive angiography or the surgical options if the attending physician is in a
group prone to recommend those options. While our construction of social
networks is merely suggestive of what in reality is a much richer and more
subtle set of interactions, it contains information that is empirically relevant
to treatment choices, and its explanatory power appears robust across patient
populations.
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Appendix

Proof of Proposition 1

Proof. Since the process on Z is irreducible and aperiodic, it has an essen-
tially unique invariant distribution. Each state can be specified in terms of
m, the location of the first zero. First we define the probabilities b(m) and
d(m) of transition m → m + 1 and m → m− 1 respectively. Recalling that
the rate of arrival of patients is one, these are given by:

b(m) =


pW if m < 0

pE otherwise.

In other words, m moves to the right if an α-patient arrives at m, which
happens with probability pW in the West and pE in the East.

d(m) =


1− pW if m ≤ 0

1− pE otherwise.

In other words, m moves to the left if a β-patient arrives at m − 1, which
happens with probability 1− pW in the West and 1− pE in the East.

The process is reversible, so that invariant distributions can be obtained
from the detailed balance conditions:

b(m− 1)ρ(m− 1) = d(m)ρ(m).

We can confirm that these are satisfied. In case m ≤ 0, we can substitute
for ρ and confirm that

b(m− 1)

d(m)
=

pW

1− pW

=
ρ(m)

ρ(m− 1)
.

When m > 0,
b(m− 1)

d(m)
=

pE

1− pE

=
ρ(m)

ρ(m− 1)
.

So ρ(·) is an invariant distribution. It is not a mixture of δ0 and δ1, hence
the process coexists.
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Figure 1. Frequency of use of procedure A at location m
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Figure 2. Use of A over time 
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Figure 3. Choice of Procedure at Locations
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Figure 4. Frequency with which procedure A is used at location m
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Figure 6. Small groups, large noise


